ANTEC™ 2009 PREVIEW

Europe:
- How Will Chemical Companies Continue Developing Business During the Downturn?
- SPE NewsRoundup
- Industry Events

North America:
- For Members Only: Finding the Best Plastics Materials for Your Products Just Got Easier
- NPE2009
- Industry Patents
- Industry Events

Worldwide:
- Industry News and Notes
• ACH Foam Technologies (Denver, Colorado USA) is asking its business partners and end-users to join in a collaborative effort to recycle EPS (expanded polystyrene) packaging. ACH uses a closed-loop manufacturing model in the production of its EPS products. ACH manufactures EPS for packaging, construction and geotechnical applications in ten plants in the U.S. and Mexico. (www.achfoam.com.)

“We are working with the Alliance of Foam Packaging Recyclers (AFPR) to ensure increased awareness and participation in the recycling of EPS packaging,” says Todd Hucmpfner, VP of Operations at ACH. “All of our products are produced with nearly zero expanded-polystyrene product waste. Water in the process is reused over and over again. We either feed scrap EPS into our grinder to be recycled into new packaging, and in many cases it becomes a green building construction product, or we apply heat and pressure to turn the EPS into a denser molded block. The densified blocks are then palletized and sent to a national reprocessing facility, where they are made into molded products such as baseboard trim, for example.”

ACH Foam Technologies’ plants are drop-off facilities for smaller quantities of post-consumer EPS packaging from any clean (non-food contaminated) source. ACH will refer consumers to the proper professional recycling facility when the quantities to be recycled surpass ACH’s capabilities. Those who don’t have access to a drop-off site are using different methods of recycling their EPS packaging, such as a mail-back program.

For detailed information on mail-in and drop-off sites for EPS, and for a brochure on how to set up a corporate recycling program, go to http://www.epspackaging.org/info.html.

• IPS Corporation has launched a new website, www.ipscorp.com. IPS manufactures solvent cements, primers, structural and assembly adhesives, sealants, and plumbing and roofing products for customers in the plumbing, construction, manufacturing, and composite and plastic fabrication industries.

• Materials Science Technology Inc., Conroe, Texas USA, has announced that it has acquired Advanced Polymer Technologies (APT), which specializes in development and testing of sealing devices. APT will be operated as a division from the Technology Center, located near Houston, Texas USA.

• PolyOne Corporation (Cleveland, Ohio USA), has launched a Chinese-language version of its global website, www.polyone.com. The addition of simplified Chinese to the company’s website will extend access to up-to-date product and technical information plus news and events, PolyOne says. When web users navigate to www.polyone.com, the site will automatically display in Chinese or English, depending on which language the visitor has set in his or her browser. Visitors can also toggle between languages with one click. The site comes equipped with an improved search engine, which works with both English and Chinese characters, PolyOne says.

• The University of Florida (Gainesville, Florida USA) is seeking companies interested in a radio frequency identification (RFID) innovation that can increase the ability to track pharmaceutical products from production facilities to distribution centers or retail locations. A novel tote has been designed to encapsulate current shipping packaging of pharmaceuticals to increase the readability of the RFID tags within the tote, while simultaneously securing the RFID information. Advances in RFID technology have revolutionized the ability to manage supply and inventory, and this innovation will vastly improve the accuracy of current RFID tag tracking methods, the University of Florida says. RFID tags are essential to tracking inventory movement, yet the package’s contents must not be easily distinguishable during transit. According to the University of Florida, this tote ensures improved RFID readability, yet does not reveal the nature of its contents when stacked. The reflective walls of the tote reflect the individual RFID tags, leading to a more precise count of the packages’ contents. To discuss this technology with a licensing officer call +1 352-392-8929 or email jmuir@ufl.edu and ask about record UF 1D: 12215.

• Chemline, St. Louis, Missouri USA, has introduced a flexible polyurea resin material specifically designed for manufacturing artificial tree bark. The company says that Chemthane 7070 gives fabricators, contractors, and building owners a means of decorating open areas with highly realistic artificial trees. Chemthane 7070 is a spray-in-mold elastomeric polyurea with high elongation and hardness formulations ranging from 75 to 85 Shore D. According to Chemline, this 1:1 mix, 100% solids product is environmen-